3.3.6 \(\int \cos ^{\frac {3}{2}}(c+d x) (a+a \cos (c+d x))^{3/2} \, dx\) [206]

Optimal. Leaf size=160 \[ \frac {11 a^{3/2} \text {ArcSin}\left (\frac {\sqrt {a} \sin (c+d x)}{\sqrt {a+a \cos (c+d x)}}\right )}{8 d}+\frac {11 a^2 \sqrt {\cos (c+d x)} \sin (c+d x)}{8 d \sqrt {a+a \cos (c+d x)}}+\frac {11 a^2 \cos ^{\frac {3}{2}}(c+d x) \sin (c+d x)}{12 d \sqrt {a+a \cos (c+d x)}}+\frac {a^2 \cos ^{\frac {5}{2}}(c+d x) \sin (c+d x)}{3 d \sqrt {a+a \cos (c+d x)}} \]

[Out]

11/8*a^(3/2)*arcsin(sin(d*x+c)*a^(1/2)/(a+a*cos(d*x+c))^(1/2))/d+11/12*a^2*cos(d*x+c)^(3/2)*sin(d*x+c)/d/(a+a*
cos(d*x+c))^(1/2)+1/3*a^2*cos(d*x+c)^(5/2)*sin(d*x+c)/d/(a+a*cos(d*x+c))^(1/2)+11/8*a^2*sin(d*x+c)*cos(d*x+c)^
(1/2)/d/(a+a*cos(d*x+c))^(1/2)

________________________________________________________________________________________

Rubi [A]
time = 0.16, antiderivative size = 160, normalized size of antiderivative = 1.00, number of steps used = 6, number of rules used = 5, integrand size = 25, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.200, Rules used = {2842, 21, 2849, 2853, 222} \begin {gather*} \frac {11 a^{3/2} \text {ArcSin}\left (\frac {\sqrt {a} \sin (c+d x)}{\sqrt {a \cos (c+d x)+a}}\right )}{8 d}+\frac {a^2 \sin (c+d x) \cos ^{\frac {5}{2}}(c+d x)}{3 d \sqrt {a \cos (c+d x)+a}}+\frac {11 a^2 \sin (c+d x) \cos ^{\frac {3}{2}}(c+d x)}{12 d \sqrt {a \cos (c+d x)+a}}+\frac {11 a^2 \sin (c+d x) \sqrt {\cos (c+d x)}}{8 d \sqrt {a \cos (c+d x)+a}} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[Cos[c + d*x]^(3/2)*(a + a*Cos[c + d*x])^(3/2),x]

[Out]

(11*a^(3/2)*ArcSin[(Sqrt[a]*Sin[c + d*x])/Sqrt[a + a*Cos[c + d*x]]])/(8*d) + (11*a^2*Sqrt[Cos[c + d*x]]*Sin[c
+ d*x])/(8*d*Sqrt[a + a*Cos[c + d*x]]) + (11*a^2*Cos[c + d*x]^(3/2)*Sin[c + d*x])/(12*d*Sqrt[a + a*Cos[c + d*x
]]) + (a^2*Cos[c + d*x]^(5/2)*Sin[c + d*x])/(3*d*Sqrt[a + a*Cos[c + d*x]])

Rule 21

Int[(u_.)*((a_) + (b_.)*(v_))^(m_.)*((c_) + (d_.)*(v_))^(n_.), x_Symbol] :> Dist[(b/d)^m, Int[u*(c + d*v)^(m +
 n), x], x] /; FreeQ[{a, b, c, d, n}, x] && EqQ[b*c - a*d, 0] && IntegerQ[m] && ( !IntegerQ[n] || SimplerQ[c +
 d*x, a + b*x])

Rule 222

Int[1/Sqrt[(a_) + (b_.)*(x_)^2], x_Symbol] :> Simp[ArcSin[Rt[-b, 2]*(x/Sqrt[a])]/Rt[-b, 2], x] /; FreeQ[{a, b}
, x] && GtQ[a, 0] && NegQ[b]

Rule 2842

Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Sim
p[(-b^2)*Cos[e + f*x]*(a + b*Sin[e + f*x])^(m - 2)*((c + d*Sin[e + f*x])^(n + 1)/(d*f*(m + n))), x] + Dist[1/(
d*(m + n)), Int[(a + b*Sin[e + f*x])^(m - 2)*(c + d*Sin[e + f*x])^n*Simp[a*b*c*(m - 2) + b^2*d*(n + 1) + a^2*d
*(m + n) - b*(b*c*(m - 1) - a*d*(3*m + 2*n - 2))*Sin[e + f*x], x], x], x] /; FreeQ[{a, b, c, d, e, f, n}, x] &
& NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && GtQ[m, 1] &&  !LtQ[n, -1] && (IntegersQ[2*m,
2*n] || IntegerQ[m + 1/2] || (IntegerQ[m] && EqQ[c, 0]))

Rule 2849

Int[Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp
[-2*b*Cos[e + f*x]*((c + d*Sin[e + f*x])^n/(f*(2*n + 1)*Sqrt[a + b*Sin[e + f*x]])), x] + Dist[2*n*((b*c + a*d)
/(b*(2*n + 1))), Int[Sqrt[a + b*Sin[e + f*x]]*(c + d*Sin[e + f*x])^(n - 1), x], x] /; FreeQ[{a, b, c, d, e, f}
, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && GtQ[n, 0] && IntegerQ[2*n]

Rule 2853

Int[Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]/Sqrt[(d_.)*sin[(e_.) + (f_.)*(x_)]], x_Symbol] :> Dist[-2/f, Su
bst[Int[1/Sqrt[1 - x^2/a], x], x, b*(Cos[e + f*x]/Sqrt[a + b*Sin[e + f*x]])], x] /; FreeQ[{a, b, d, e, f}, x]
&& EqQ[a^2 - b^2, 0] && EqQ[d, a/b]

Rubi steps

\begin {align*} \int \cos ^{\frac {3}{2}}(c+d x) (a+a \cos (c+d x))^{3/2} \, dx &=\frac {a^2 \cos ^{\frac {5}{2}}(c+d x) \sin (c+d x)}{3 d \sqrt {a+a \cos (c+d x)}}+\frac {1}{3} \int \frac {\cos ^{\frac {3}{2}}(c+d x) \left (\frac {11 a^2}{2}+\frac {11}{2} a^2 \cos (c+d x)\right )}{\sqrt {a+a \cos (c+d x)}} \, dx\\ &=\frac {a^2 \cos ^{\frac {5}{2}}(c+d x) \sin (c+d x)}{3 d \sqrt {a+a \cos (c+d x)}}+\frac {1}{6} (11 a) \int \cos ^{\frac {3}{2}}(c+d x) \sqrt {a+a \cos (c+d x)} \, dx\\ &=\frac {11 a^2 \cos ^{\frac {3}{2}}(c+d x) \sin (c+d x)}{12 d \sqrt {a+a \cos (c+d x)}}+\frac {a^2 \cos ^{\frac {5}{2}}(c+d x) \sin (c+d x)}{3 d \sqrt {a+a \cos (c+d x)}}+\frac {1}{8} (11 a) \int \sqrt {\cos (c+d x)} \sqrt {a+a \cos (c+d x)} \, dx\\ &=\frac {11 a^2 \sqrt {\cos (c+d x)} \sin (c+d x)}{8 d \sqrt {a+a \cos (c+d x)}}+\frac {11 a^2 \cos ^{\frac {3}{2}}(c+d x) \sin (c+d x)}{12 d \sqrt {a+a \cos (c+d x)}}+\frac {a^2 \cos ^{\frac {5}{2}}(c+d x) \sin (c+d x)}{3 d \sqrt {a+a \cos (c+d x)}}+\frac {1}{16} (11 a) \int \frac {\sqrt {a+a \cos (c+d x)}}{\sqrt {\cos (c+d x)}} \, dx\\ &=\frac {11 a^2 \sqrt {\cos (c+d x)} \sin (c+d x)}{8 d \sqrt {a+a \cos (c+d x)}}+\frac {11 a^2 \cos ^{\frac {3}{2}}(c+d x) \sin (c+d x)}{12 d \sqrt {a+a \cos (c+d x)}}+\frac {a^2 \cos ^{\frac {5}{2}}(c+d x) \sin (c+d x)}{3 d \sqrt {a+a \cos (c+d x)}}-\frac {(11 a) \text {Subst}\left (\int \frac {1}{\sqrt {1-\frac {x^2}{a}}} \, dx,x,-\frac {a \sin (c+d x)}{\sqrt {a+a \cos (c+d x)}}\right )}{8 d}\\ &=\frac {11 a^{3/2} \sin ^{-1}\left (\frac {\sqrt {a} \sin (c+d x)}{\sqrt {a+a \cos (c+d x)}}\right )}{8 d}+\frac {11 a^2 \sqrt {\cos (c+d x)} \sin (c+d x)}{8 d \sqrt {a+a \cos (c+d x)}}+\frac {11 a^2 \cos ^{\frac {3}{2}}(c+d x) \sin (c+d x)}{12 d \sqrt {a+a \cos (c+d x)}}+\frac {a^2 \cos ^{\frac {5}{2}}(c+d x) \sin (c+d x)}{3 d \sqrt {a+a \cos (c+d x)}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]
time = 0.56, size = 106, normalized size = 0.66 \begin {gather*} \frac {a \sqrt {a (1+\cos (c+d x))} \sec \left (\frac {1}{2} (c+d x)\right ) \left (33 \sqrt {2} \text {ArcSin}\left (\sqrt {2} \sin \left (\frac {1}{2} (c+d x)\right )\right )+2 \sqrt {\cos (c+d x)} \left (26 \sin \left (\frac {1}{2} (c+d x)\right )+9 \sin \left (\frac {3}{2} (c+d x)\right )+2 \sin \left (\frac {5}{2} (c+d x)\right )\right )\right )}{48 d} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[Cos[c + d*x]^(3/2)*(a + a*Cos[c + d*x])^(3/2),x]

[Out]

(a*Sqrt[a*(1 + Cos[c + d*x])]*Sec[(c + d*x)/2]*(33*Sqrt[2]*ArcSin[Sqrt[2]*Sin[(c + d*x)/2]] + 2*Sqrt[Cos[c + d
*x]]*(26*Sin[(c + d*x)/2] + 9*Sin[(3*(c + d*x))/2] + 2*Sin[(5*(c + d*x))/2])))/(48*d)

________________________________________________________________________________________

Maple [A]
time = 0.24, size = 197, normalized size = 1.23

method result size
default \(\frac {\left (-1+\cos \left (d x +c \right )\right )^{2} \left (8 \sqrt {\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, \left (\cos ^{2}\left (d x +c \right )\right ) \sin \left (d x +c \right )+22 \sqrt {\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, \cos \left (d x +c \right ) \sin \left (d x +c \right )+33 \sqrt {\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, \sin \left (d x +c \right )+33 \arctan \left (\frac {\sin \left (d x +c \right ) \sqrt {\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}}{\cos \left (d x +c \right )}\right )\right ) \sqrt {a \left (1+\cos \left (d x +c \right )\right )}\, \left (\cos ^{\frac {3}{2}}\left (d x +c \right )\right ) a}{24 d \left (\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}\right )^{\frac {3}{2}} \sin \left (d x +c \right )^{4}}\) \(197\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(cos(d*x+c)^(3/2)*(a+a*cos(d*x+c))^(3/2),x,method=_RETURNVERBOSE)

[Out]

1/24/d*(-1+cos(d*x+c))^2*(8*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*cos(d*x+c)^2*sin(d*x+c)+22*(cos(d*x+c)/(1+cos(d*
x+c)))^(1/2)*cos(d*x+c)*sin(d*x+c)+33*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*sin(d*x+c)+33*arctan(sin(d*x+c)*(cos(d
*x+c)/(1+cos(d*x+c)))^(1/2)/cos(d*x+c)))*(a*(1+cos(d*x+c)))^(1/2)*cos(d*x+c)^(3/2)/(cos(d*x+c)/(1+cos(d*x+c)))
^(3/2)/sin(d*x+c)^4*a

________________________________________________________________________________________

Maxima [B] Leaf count of result is larger than twice the leaf count of optimal. 1942 vs. \(2 (134) = 268\).
time = 0.71, size = 1942, normalized size = 12.14 \begin {gather*} \text {Too large to display} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)^(3/2)*(a+a*cos(d*x+c))^(3/2),x, algorithm="maxima")

[Out]

1/96*(4*(a*cos(3/2*arctan2(sin(2/3*arctan2(sin(3*d*x + 3*c), cos(3*d*x + 3*c))), cos(2/3*arctan2(sin(3*d*x + 3
*c), cos(3*d*x + 3*c))) + 1))*sin(3*d*x + 3*c) - (a*cos(3*d*x + 3*c) - a)*sin(3/2*arctan2(sin(2/3*arctan2(sin(
3*d*x + 3*c), cos(3*d*x + 3*c))), cos(2/3*arctan2(sin(3*d*x + 3*c), cos(3*d*x + 3*c))) + 1)))*(cos(2/3*arctan2
(sin(3*d*x + 3*c), cos(3*d*x + 3*c)))^2 + sin(2/3*arctan2(sin(3*d*x + 3*c), cos(3*d*x + 3*c)))^2 + 2*cos(2/3*a
rctan2(sin(3*d*x + 3*c), cos(3*d*x + 3*c))) + 1)^(3/4)*sqrt(a) + 6*(cos(2/3*arctan2(sin(3*d*x + 3*c), cos(3*d*
x + 3*c)))^2 + sin(2/3*arctan2(sin(3*d*x + 3*c), cos(3*d*x + 3*c)))^2 + 2*cos(2/3*arctan2(sin(3*d*x + 3*c), co
s(3*d*x + 3*c))) + 1)^(1/4)*((3*a*sin(2/3*arctan2(sin(3*d*x + 3*c), cos(3*d*x + 3*c))) + 11*a*sin(1/3*arctan2(
sin(3*d*x + 3*c), cos(3*d*x + 3*c))))*cos(1/2*arctan2(sin(2/3*arctan2(sin(3*d*x + 3*c), cos(3*d*x + 3*c))), co
s(2/3*arctan2(sin(3*d*x + 3*c), cos(3*d*x + 3*c))) + 1)) - (3*a*cos(2/3*arctan2(sin(3*d*x + 3*c), cos(3*d*x +
3*c))) + 5*a*cos(1/3*arctan2(sin(3*d*x + 3*c), cos(3*d*x + 3*c))) - 8*a)*sin(1/2*arctan2(sin(2/3*arctan2(sin(3
*d*x + 3*c), cos(3*d*x + 3*c))), cos(2/3*arctan2(sin(3*d*x + 3*c), cos(3*d*x + 3*c))) + 1)))*sqrt(a) + 33*(a*a
rctan2(-(cos(2/3*arctan2(sin(3*d*x + 3*c), cos(3*d*x + 3*c)))^2 + sin(2/3*arctan2(sin(3*d*x + 3*c), cos(3*d*x
+ 3*c)))^2 + 2*cos(2/3*arctan2(sin(3*d*x + 3*c), cos(3*d*x + 3*c))) + 1)^(1/4)*(cos(1/2*arctan2(sin(2/3*arctan
2(sin(3*d*x + 3*c), cos(3*d*x + 3*c))), cos(2/3*arctan2(sin(3*d*x + 3*c), cos(3*d*x + 3*c))) + 1))*sin(1/3*arc
tan2(sin(3*d*x + 3*c), cos(3*d*x + 3*c))) - cos(1/3*arctan2(sin(3*d*x + 3*c), cos(3*d*x + 3*c)))*sin(1/2*arcta
n2(sin(2/3*arctan2(sin(3*d*x + 3*c), cos(3*d*x + 3*c))), cos(2/3*arctan2(sin(3*d*x + 3*c), cos(3*d*x + 3*c)))
+ 1))), (cos(2/3*arctan2(sin(3*d*x + 3*c), cos(3*d*x + 3*c)))^2 + sin(2/3*arctan2(sin(3*d*x + 3*c), cos(3*d*x
+ 3*c)))^2 + 2*cos(2/3*arctan2(sin(3*d*x + 3*c), cos(3*d*x + 3*c))) + 1)^(1/4)*(cos(1/3*arctan2(sin(3*d*x + 3*
c), cos(3*d*x + 3*c)))*cos(1/2*arctan2(sin(2/3*arctan2(sin(3*d*x + 3*c), cos(3*d*x + 3*c))), cos(2/3*arctan2(s
in(3*d*x + 3*c), cos(3*d*x + 3*c))) + 1)) + sin(1/3*arctan2(sin(3*d*x + 3*c), cos(3*d*x + 3*c)))*sin(1/2*arcta
n2(sin(2/3*arctan2(sin(3*d*x + 3*c), cos(3*d*x + 3*c))), cos(2/3*arctan2(sin(3*d*x + 3*c), cos(3*d*x + 3*c)))
+ 1))) + 1) - a*arctan2(-(cos(2/3*arctan2(sin(3*d*x + 3*c), cos(3*d*x + 3*c)))^2 + sin(2/3*arctan2(sin(3*d*x +
 3*c), cos(3*d*x + 3*c)))^2 + 2*cos(2/3*arctan2(sin(3*d*x + 3*c), cos(3*d*x + 3*c))) + 1)^(1/4)*(cos(1/2*arcta
n2(sin(2/3*arctan2(sin(3*d*x + 3*c), cos(3*d*x + 3*c))), cos(2/3*arctan2(sin(3*d*x + 3*c), cos(3*d*x + 3*c)))
+ 1))*sin(1/3*arctan2(sin(3*d*x + 3*c), cos(3*d*x + 3*c))) - cos(1/3*arctan2(sin(3*d*x + 3*c), cos(3*d*x + 3*c
)))*sin(1/2*arctan2(sin(2/3*arctan2(sin(3*d*x + 3*c), cos(3*d*x + 3*c))), cos(2/3*arctan2(sin(3*d*x + 3*c), co
s(3*d*x + 3*c))) + 1))), (cos(2/3*arctan2(sin(3*d*x + 3*c), cos(3*d*x + 3*c)))^2 + sin(2/3*arctan2(sin(3*d*x +
 3*c), cos(3*d*x + 3*c)))^2 + 2*cos(2/3*arctan2(sin(3*d*x + 3*c), cos(3*d*x + 3*c))) + 1)^(1/4)*(cos(1/3*arcta
n2(sin(3*d*x + 3*c), cos(3*d*x + 3*c)))*cos(1/2*arctan2(sin(2/3*arctan2(sin(3*d*x + 3*c), cos(3*d*x + 3*c))),
cos(2/3*arctan2(sin(3*d*x + 3*c), cos(3*d*x + 3*c))) + 1)) + sin(1/3*arctan2(sin(3*d*x + 3*c), cos(3*d*x + 3*c
)))*sin(1/2*arctan2(sin(2/3*arctan2(sin(3*d*x + 3*c), cos(3*d*x + 3*c))), cos(2/3*arctan2(sin(3*d*x + 3*c), co
s(3*d*x + 3*c))) + 1))) - 1) - a*arctan2((cos(2/3*arctan2(sin(3*d*x + 3*c), cos(3*d*x + 3*c)))^2 + sin(2/3*arc
tan2(sin(3*d*x + 3*c), cos(3*d*x + 3*c)))^2 + 2*cos(2/3*arctan2(sin(3*d*x + 3*c), cos(3*d*x + 3*c))) + 1)^(1/4
)*sin(1/2*arctan2(sin(2/3*arctan2(sin(3*d*x + 3*c), cos(3*d*x + 3*c))), cos(2/3*arctan2(sin(3*d*x + 3*c), cos(
3*d*x + 3*c))) + 1)), (cos(2/3*arctan2(sin(3*d*x + 3*c), cos(3*d*x + 3*c)))^2 + sin(2/3*arctan2(sin(3*d*x + 3*
c), cos(3*d*x + 3*c)))^2 + 2*cos(2/3*arctan2(sin(3*d*x + 3*c), cos(3*d*x + 3*c))) + 1)^(1/4)*cos(1/2*arctan2(s
in(2/3*arctan2(sin(3*d*x + 3*c), cos(3*d*x + 3*c))), cos(2/3*arctan2(sin(3*d*x + 3*c), cos(3*d*x + 3*c))) + 1)
) + 1) + a*arctan2((cos(2/3*arctan2(sin(3*d*x + 3*c), cos(3*d*x + 3*c)))^2 + sin(2/3*arctan2(sin(3*d*x + 3*c),
 cos(3*d*x + 3*c)))^2 + 2*cos(2/3*arctan2(sin(3*d*x + 3*c), cos(3*d*x + 3*c))) + 1)^(1/4)*sin(1/2*arctan2(sin(
2/3*arctan2(sin(3*d*x + 3*c), cos(3*d*x + 3*c))), cos(2/3*arctan2(sin(3*d*x + 3*c), cos(3*d*x + 3*c))) + 1)),
(cos(2/3*arctan2(sin(3*d*x + 3*c), cos(3*d*x + 3*c)))^2 + sin(2/3*arctan2(sin(3*d*x + 3*c), cos(3*d*x + 3*c)))
^2 + 2*cos(2/3*arctan2(sin(3*d*x + 3*c), cos(3*d*x + 3*c))) + 1)^(1/4)*cos(1/2*arctan2(sin(2/3*arctan2(sin(3*d
*x + 3*c), cos(3*d*x + 3*c))), cos(2/3*arctan2(sin(3*d*x + 3*c), cos(3*d*x + 3*c))) + 1)) - 1))*sqrt(a))/d

________________________________________________________________________________________

Fricas [A]
time = 0.43, size = 114, normalized size = 0.71 \begin {gather*} \frac {{\left (8 \, a \cos \left (d x + c\right )^{2} + 22 \, a \cos \left (d x + c\right ) + 33 \, a\right )} \sqrt {a \cos \left (d x + c\right ) + a} \sqrt {\cos \left (d x + c\right )} \sin \left (d x + c\right ) - 33 \, {\left (a \cos \left (d x + c\right ) + a\right )} \sqrt {a} \arctan \left (\frac {\sqrt {a \cos \left (d x + c\right ) + a} \sqrt {\cos \left (d x + c\right )}}{\sqrt {a} \sin \left (d x + c\right )}\right )}{24 \, {\left (d \cos \left (d x + c\right ) + d\right )}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)^(3/2)*(a+a*cos(d*x+c))^(3/2),x, algorithm="fricas")

[Out]

1/24*((8*a*cos(d*x + c)^2 + 22*a*cos(d*x + c) + 33*a)*sqrt(a*cos(d*x + c) + a)*sqrt(cos(d*x + c))*sin(d*x + c)
 - 33*(a*cos(d*x + c) + a)*sqrt(a)*arctan(sqrt(a*cos(d*x + c) + a)*sqrt(cos(d*x + c))/(sqrt(a)*sin(d*x + c))))
/(d*cos(d*x + c) + d)

________________________________________________________________________________________

Sympy [F(-1)] Timed out
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Timed out} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)**(3/2)*(a+a*cos(d*x+c))**(3/2),x)

[Out]

Timed out

________________________________________________________________________________________

Giac [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {could not integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)^(3/2)*(a+a*cos(d*x+c))^(3/2),x, algorithm="giac")

[Out]

integrate((a*cos(d*x + c) + a)^(3/2)*cos(d*x + c)^(3/2), x)

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.01 \begin {gather*} \int {\cos \left (c+d\,x\right )}^{3/2}\,{\left (a+a\,\cos \left (c+d\,x\right )\right )}^{3/2} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(cos(c + d*x)^(3/2)*(a + a*cos(c + d*x))^(3/2),x)

[Out]

int(cos(c + d*x)^(3/2)*(a + a*cos(c + d*x))^(3/2), x)

________________________________________________________________________________________